
Automatic Verification of a Turbogas Control
System with the Murϕ Verifier�

Giuseppe Della Penna1, Benedetto Intrigila1, Igor Melatti1,
Michele Minichino3, Ester Ciancamerla3, Andrea Parisse1, Enrico Tronci2,��,

and Marisa Venturini Zilli2

1 Dip. di Informatica, Università di L’Aquila, Coppito 67100, L’Aquila, Italy
{dellapenna,intrigila,melatti,parisse}@di.univaq.it
2 Dip. di Informatica Università di Roma “La Sapienza”,
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Abstract. Automatic analysis of Hybrid Systems poses formidable chal-
lenges both from a modeling as well as from a verification point of view.
We present a case study on automatic verification of a Turbogas Control
System (TCS) using an extended version of the Murϕ verifier. TCS is
the heart of ICARO, a 2MW Co-generative Electric Power Plant.
For large hybrid systems, as TCS is, the modeling effort accounts for a
significant part of the whole verification activity. In order to ease our mo-
deling effort we extended the Murϕ verifier by importing the C language
long double type (finite precision real numbers) into it.
We give experimental results on running our extended Murϕ on our TCS
model. For example using Murϕ we were able to compute an admissible
range of values for the variation speed of the user demand of electric
power to the turbogas.

1 Introduction

Automatic analysis of Hybrid Systems poses formidable challenges both from a
modeling as well as from a verification point of view. In fact the simultaneous
presence of continuous and discrete variables may lead very quickly to state
explosion, thus preventing completion of the verification process.

Many verification tools (model checkers) are available for automatic verifi-
cation of hybrid systems. Examples are: HyTech [14,2,1] and UPPAAL [17,26].
Also tools originally designed for hardware verification have been used for hybrid
systems verification. E.g. in [25] SMV [18,21] has been used for verification of
chemical processing systems.
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In this paper we present a case study on automatic verification of a Turbogas
Control System (TCS) using an extended version of the Murϕ verifier [9,19].
TCS is the main subsystem of ICARO, a 2MW Co-generative Electric Power
Plant in operation at the ENEA Research Center of Casaccia (Italy). TCS is
a quite complex control system whose main goal is to regulate the opening
of the fuel gas valve of ICARO turbine so that the generated electric power,
turbine rotation speed and exhaust smokes temperature are all within given
limits notwithstanding changes in the user demand for electric power to the
turbogas.

We resorted to the Murϕ verifier after failing to complete verification using
HyTech and SMV. We think Murϕ success on this case study can be explained
as follows. The transition relations of the many subsystems forming TCS are
quite big. This fact is an obstruction for symbolic model checkers as HyTech
and SMV. However, when we put such transition relations together the set of
reachable states becomes of moderate size. In fact, the controller goal is exactly
that of keeping the reachable states within a small neighborhood of the system
setpoint. An explicit model checker, like Murϕ, can easily exploit this fact thus
avoiding state explosion.

To ease the hybrid systems modeling activity we decided to import within
the Murϕ verifier the C long double type (finite precision real numbers). The
resulting Murϕ verifier still uses a discrete time model. However the C long
double type is now available for real valued state variables. This turned out to
be very useful during the modeling activity, which, in our experience, accounts for
a significant part of the whole hybrid system verification activity. Of course our
extension to Murϕ applies to Cached Murϕ [23,7], Disk Murϕ [20] and Random
Murϕ [24] as well.

Our results show that Murϕ, enhanced with finite precision real numbers, is
definitively to be considered among the candidate tools available for automatic
analysis of hybrid control systems. The main contributions of this paper can be
summarized as follows.

– We sketch (Section 3) syntax and semantics of the Murϕ verifier enhanced
with finite precision real numbers.

– We present (Section 4) our case study on verification of a Turbogas Control
System (TCS).

– We show (Section 5) some of our experimental results on using Murϕ en-
hanced with finite precision real numbers on the Murϕ model for the system
described in Section 4. Using Murϕ we were able to compute an admissible
range of values for the variation speed of the user demand for electric power
to the turbogas.

2 The Murϕ Verifier

The goal of this section is to give a short overview of the Murϕ verifier. For
further details we refer the reader to [9,19].

From a conceptual point of view, Murϕ takes as input a Finite State System
S and checks that a given invariant property ϕ for S is satisfied.
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Definition 1. 1. A Finite State System (FSS) S is a 4-tuple (S, I, A, R)
where: S is a finite set (of states), I ⊆ S is the set of initial states, A is a
finite set (of transition labels) and R is a relation on S ×A×S. R is usually
called the transition relation of S.

2. Given states s, s′ ∈ S and a ∈ A we say that there is a transition from s to
s′ labeled with a iff R(s, a, s′) holds. We say that there is a transition from
s to s′ (notation R(s, s′)) iff there exists a ∈ A s.t. R(s, a, s′) holds. The set
of successors of state s (notation next(s)) is the set of states s′ s.t. R(s, s′).

3. The set of reachable states of S (notation Reach(S)) is the set of states of
S reachable in zero or more steps from I.
Formally, Reach(S) is the smallest set s.t.
1. I ⊆ Reach(S),
2. for all s ∈ Reach(S), next(s) ⊆ Reach(S).

In the following we will always refer to a given (once and for all) system S =
(S, I, A, R). Thus, e.g., we will write Reach for Reach(S). Also we may speak
about the set of initial states I as well as about the transition relation R without
explicitly mentioning S.

The core of all automatic verification tools is the reachability analysis, i.e.
the computation of Reach given a definition of S in some language. In fact
checking that all reachable states of S satisfy a given (invariant) property ϕ
entails computing Reach. For this reason we focus on the computation of the set
of reachable states of S.

Since the transition relation R of a system defines a graph (transition graph)
computing Reach means visiting (exploring) the transition graph starting from
the initial states in I. This can be done, e.g., using a Depth First (DF) visit or
a Breadth First (BF) visit.

For example the automatic verifier SPIN [22] uses a DF visit. Murϕ [19] may
use a DF as well as a BF visit. However certain compression options can only
be used with a BF visit, for this reason here we focus only on BF visit.

Fig. 1 shows the standard BF state space exploration algorithm. Essentially
this is the algorithm used by Murϕ to visit the state space of a given system S.

Note that since S is a finite state system, the algorithm in Fig. 1 always
terminates since we never visit the same state more than once.

Queue Q; Hash Table T;
bfs(init_states, next) {
for s in init_states enqueue(Q, s); /* load Q with initial states */
for s in init_states insert(T, s); /* mark initial states as visited */
while (Q is not empty) { s = dequeue(Q); /* visit */
for all s’ in next(s)

if (s’ is not in T) {enqueue(Q, s’); insert(T, s’);}}}

Fig. 1. Explicit Breadth First Visit

The algorithm in Fig. 1 makes use of two main memory data structures: a
Queue, where states are stored and retrieved (in FIFO order) during the search,
and a Hash Table used to store all visited states. In Fig. 1 invariants for state s
may be checked whenever function enqueue(Q, s) is called.
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Note that Murϕ (like SPIN) represents states explicitly, i.e. each visited state
is stored in RAM (namely in the hash table). There are model checkers (e.g.
UPPAAL, SMV, HyTech) that represent states symbolically. In symbolic model
checking the set V of visited states is represented with its characteristic function
f (i.e. f(s) = if s ∈ V then 1 else 0) and suitable data structures (e.g. OBDDs,
Ordered Binary Decision Diagrams [6]) are used to represent f . Examples of
symbolic model checkers are SMV [21], UPPAAL [17,26] (both based on OBDDs)
and HyTech [14,2,1] which is based on polyedra in multidimensional real space
[13,8,11,12].

Explicit model checkers (e.g. as Murϕ and SPIN) typically perform better on
software-like (i.e. asynchronous) systems [15], whereas symbolic model checkers
(e.g. as SMV) typically perform better on hardware-like (i.e. synchronous) sy-
stems.

Murϕ input consists of a definition of the system S to be verified and a
definition of the property ϕ to be checked. Both definitions are stored in a file
that we call here Murϕ description.

The Murϕ description language for system S is a high-level programming
language for finite-state asynchronous concurrent systems (i.e. software like sy-
stems). Murϕ description language is high-level in the sense that many features
found in common high-level programming languages such as Pascal or C are
part of Murϕ. For example, Murϕ has user-defined data types, procedures, and
parameterization of descriptions.

A Murϕ description consists of: declarations of constants, types, global va-
riables and procedures; a collection of transition rules; a description of the initial
states; and a set of invariants.

The behavioral part of Murϕ is a collection of transition rules. Each transition
rule is a guarded command which consists of a condition (a Boolean expression
on global variables) and an action (a statement that can modify the values of
the variables).

The condition and the action are both written in a Pascal-like language.
The action can be an arbitrarily complex statement containing loops and con-
ditionals. No matter how complex it is, the action is executed atomically, i.e.
no other rule can change the variables or otherwise interfere with it while it is
being executed.

A Murϕ state is an assignment of values to all of the global variables of the
description.

An execution of the description is generated by executing the endless loop in
Fig. 2.

loop forever {
1. Find all enabled rules, i.e. all rules whose conditions are true

in the current state;
2. Choose arbitrarily an enabled rule and execute its action,

thus yielding a new state; }

Fig. 2. Murϕ execution loop
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Note that Murϕ descriptions are nondeterministic, because of the arbitrary
choice in step 2 in Fig. 2. The user has no control over how this choice is made,
so a correct Murϕ program must do the right thing no matter which rules are
chosen. However, once a rule has been chosen, the action is deterministic (there
is a unique next state). Note that when using Murϕ as a verifier all reachable
states of a Murϕ program are visited.

A small toy example should help to clarify the matter. Let us consider the
Discrete Time System (DTS) defined by equation 1, where x(t) is the state value
at time t and d(t) is the disturbance value at time t.

x(t + 1) =
{

x(t) + d(t) if x(t) ≤ 3
x(t) − d(t) otherwise ∀t[d(t) ∈ {0, 1, 2}], x(0) = 0. (1)

Fig. 3 shows the FSS corresponding to the DTS defined by Equation 1. The
initial state x(0) = 0 is shown with an arrow in Fig. 3, where nodes are labeled
with state values and edges are labeled with action (disturbance, in our case)
values.

Murϕ code for the DTS in Equation 1 is given in Fig. 4 where we have
examples of (declarations of) constants, types, global variables, functions, initial
states, transition rules and invariants.

Fig. 5 summarizes the output of the Murϕ verifier when given the input in
Fig. 4. Namely, the Murϕ verifier returns an error trace, i.e. a (loopless) path
in the graph in Fig. 3 from an initial state to a state violating the invariant
property. If we replace the < sign in the invariant in Fig. 4 with ≤ then the
invariant property is always satisfied since all reachable states of the DTS defined
by Equation 1 have a value less than or equal to 5 (see Fig. 3).

Remark 1. In the BF algorithm in Fig. 1 only reachable states are visited and
thus stored in the hash table T. That is the set of reachable states essentially
depends only on the system dynamics. For example, the set of reachable states
for the system defined in Fig. 4 is the integer interval [0, 5]. This set does not
depend on state type (the type of variable x in Fig. 4) as long as state type
contains the integer interval [0, 5]. For example, if in Fig. 4 we change the
state type declaration to state type : 0..100, the set of reachable states is
still the integer interval [0, 5].

3 Extending Murϕ Input Language with Real Numbers

Murϕ built-in types are ranges of integers and enumerative types. To ease the
hybrid systems modeling activity we also want to be able to handle finite pre-
cision real numbers within the Murϕ verifier. Namely, we want to be able to
handle within Murϕ numbers of the form sM d0.d1 · · · dm−1×10sE en−1···e0 where:
di and ei are decimal digits, d0 �= 0, sM , sE ∈ {′+′,′ −′}. As usual we call
sM d0.d1 · · · dm−1 the mantissa and sE en−1 · · · e0 the exponent of the number
sM d0.d1 · · · dm−1 × 10sE en−1···e0 .
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Fig. 3. FSS for the discrete time system in Equation 1.

CONST -- constant declarations
MAX_STATE_VALUE : 5;
TYPE -- type declarations
state_type : 0 .. 10; -- integers from 0 to 10
disturbance_type : 0 .. 2; -- integers from 0 to 2
VAR -- (global) variable declarations
x : state_type; -- x is a variable of type state_type

-- define next state function
function next(x: state_type; d : disturbance_type): state_type;
begin if (x <= 3) then return (x + d); else return (x - d); endif end;

startstate "init" x := 0; end; -- define initial state

ruleset d : disturbance_type do -- define transition rule
rule "time step" true ==> begin x := next(x, d); end;

end; -- ruleset d

invariant "x is not too big" -- define property to be verified
(x < MAX_STATE_VALUE);

Fig. 4. Murϕ code for the DTS in Equation 1.

Startstate init fired.
x:0
----------
Rule time step, d:1 fired.
x:1
----------
Rule time step, d:2 fired.
x:3
----------
Rule time step, d:2 fired.
The last state of the trace (in full) is:
x:5
----------

Fig. 5. Murϕ error trace for Murϕ model in Fig. 4.
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const -- constant declarations
SAMPLING_FREQ : 100.0; -- Hz. Inverse of the sampling time.
MAX_U: 200.0; -- Max user demand value (kW)
MAX_D_U: 10.0; -- Max of time derivative of user demand
MAX_D_P: 0.1; -- Max of time derivative of compressor pression
MAX_PRES_COMPR: 13.0; -- Max compressor pression (bar)
MIN_PRES_COMPR : 11.0; -- Min compressor pression (bar)
Power_setpnt : 2000.0; -- Setpoint of Electric Power (kW)
Texh_setpnt : 552; -- Setpoint of exhaust smokes temperature(C)
Vrot_setpnt: 75; -- Setpoint of rotation speed (RPM)
Pow_v_coef : Power_setpnt; -- valve coefficient in turbogas model
Texh_v_coef : 0.1*Texh_setpnt; -- valve coefficient in turbogas model
Vrot_v_coef : 2*Vrot_setpnt; -- valve coefficient in turbogas model
FREQ_1 : 100; -- frequency injection disturbances

type -- type declarations
Disturbance_type : -1..1;
real_type : real(4, 2); -- used for all real variables
longint_type : -50000 .. +50000; -- used for counters

var -- variable declarations
step_counter : longint_type; -- initialized to 0

-- we do: step_counter := (step_counter + 1)%FREQ_1 at each time step
Power : real_type; -- Generated Electric Power

Fig. 6. A glimpse of the Murϕ declarations used in our model.

To this end we add to the Murϕ verifier the type real(m, n) of real numbers
with m digits for the mantissa and n digits for the exponent. Type real(m, n)
is finite, its cardinality is 2 × 9 × 10m−1 × 2 × 10n = 36 × 10m+n−1. Thus our
extension has no impact on Murϕ verification algorithms (e.g. as that in Fig. 1)
, however makes it easier to model hybrid systems within Murϕ.

Note that, as from Remark 1, the huge cardinality of the type real(m, n)
does not imply, a priori, a huge size of the set of reachable states.

The type real(m, n) is built on long double C type. For this reason the
mantissa size m and the exponent size n in real(m, n) must satisfy the following
constraints: 1 ≤ m ≤ LDBL DIG, 2 ≤ n ≤ �log10LDBL MAX 10 EXP� + 1, where
LDBL DIG is the maximum number of digits for the mantissa of the long double
C type and LDBL MAX 10 EXP is the maximum value of the exponent of the long
double C type. These constants are defined in the C header float.h.

Fig. 6 gives an example of variables and constant declarations within our
extended Murϕ.

We also extended Murϕ by importing all functions available in the C math
library (header math.h). Such functions can now be freely used within the Murϕ
input language.

Our extension to Murϕ is implemented by suitably extending Murϕ parser
and by adding (low level) functions to store and retrieve finite precision real
values into the Murϕ internal state representation (namely, state byte vector
bits, see Murϕ documentation [19]).

4 ICARO Turbogas Control System

In this section we will shortly describe the system to be verified and the requi-
rements that we are supposed to verify.
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ICARO is a 2MW Electric Co-generative Power Plant, in operation at the
ENEA Research Center of Casaccia (Italy), used to provide electricity and hea-
ting to the above ENEA Center.

Depending on the operating conditions (e.g. startup, normal, shutdown)
ICARO models are widely different. Here we only focus on normal operating
conditions, i.e. the situation in which ICARO is running at its nominal (setpoint)
power. In particular our model cannot be used to study system behaviour during
transient operating modes (e.g. at startup or shutdown).

ICARO plant consists of many subsystems. Here we only focus on one of the
many subsystems of ICARO (e.g. see [5,3,4]). Namely we focus on the Gas Tur-
bine ICARO subsystem that we call in the following ICARO Turbogas Control
System (TCS). TCS is the heart of ICARO and is indeed ICARO most criti-
cal subsystem. Unfortunately, TCS is also the largest ICARO subsystem, thus
making the use of model checking for such hybrid system a challenge.

Unless otherwise stated, all our data (e.g. block diagrams, parameter values,
etc) are taken from the ICARO documentation [10].

TCS is a control system, that is a (hybrid) system in which we can distinguish
two subsystems: the plant (i.e. the controlled system) and the controller (which
sends commands to the plant in order to meet given requirements on the whole
system behaviour). Note that many (but not all) hybrid systems are indeed
control systems.

Fig. 7 shows the high level block diagram for TCS. The Turbogas block in
Fig. 7 is the the plant. The Controller block in Fig. 7 is the the controller. In the
following we describe the elements of Fig. 7.

TurbogasController Fuel Valve
Opening (fg102)

User Demand (u)

Turbine Rotation Speed (Vrot)
Electric Power Generated by the Alternator (Pel)

Compressor Pression (Pmc)

Exhaust Smokes Teperature   (Texh)

Fig. 7. High level block diagram of ICARO Turbogas Control System

4.1 Turbogas Continuous Time Model

The block named Turbogas in Fig. 7 models the Gas Turbine module. As a
matter of fact this module consists of many subsystems (e.g. the compressor,
the combustion chamber, the turbine itself and the generator). For our purposes
here we can simply look at its input-output model. The turbogas system has the
following input variables.
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fg102 Variable fg102 takes value in the real interval [0,1]. This variable gives
the opening fraction of the turbogas fuel gas valve (namely valve FG102).
For example variable fg102 takes value 0 when the valve FG102 is fully
closed (no fuel can flow trough the valve) and value 1 when the valve
FG102 is fully opened. This is a control variable, i.e. a variable whose
value can be chosen by the controller so as to achieve predefined goals.

u Variable u models the User Demand of electric power. This variable has
to be considered as a disturbance, i.e. a variable whose value we (i.e. the
controller) cannot choose.

The output variables of the turbogas system are the following ones.

Pel Electric power generated by the alternator.
Vrot Rotation speed of the gas turbine.
Texh Temperature of the exhaust smokes.
Pmc Pression of the compressor.

The controller goal is to keep the turbogas output variables as close as possi-
ble to their setpoint notwithstanding variations in the user demand u. The values
of the output variables at the setpoint are given in Fig. 8.

– Electric Power setpoint value: P 0
el = 2000 (KW).

– Exhaust Smokes Temperature setpoint value: T 0
exh = 552 (C).

– Turbine Rotation Speed setpoint value: V 0
rot = 75 (RPM)

– Compressor Pression setpoint value: P 0
mc = 12 (Bar)

Fig. 8. Turbogas setpoint values.

For the purposes of our analysis we used the ODE (Ordinary Differential
Equation) model, shown in Fig. 9, to link turbogas input variables with output
variables. Of course such a model is only valid in a neighborhood of the setpoint.

Note that, according to the model in Fig. 9, the compressor pression Pmc can
change value nondeterministically as long as it satisfies the constraints given in
Fig. 9. We do not need a more detailed model here since the compressor pression
is only used as input to the fuel gas valve controller whose requirements do not
involve the compressor pression.

We do not know in advance the user demand u. However, by making some
hypothesis on the user demand u dynamics we can follow for the user demand
model in Fig. 9 the same approach we used for the compressor pression. Namely,
we simply ask that the user demand u(t) be in the interval [0, MAX U ] (the
user demand is always non-negative since users cannot produce electric power)
and the variation speed of the user demand u̇(t) be at most MAX D U . Note
that for the model in Fig. 9 the only input variable is fg102, all other variables
(i.e. Pel, Vrot, Texh, Pmc, u) are state as well as output variables.
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Ṗel(t) = α1,1Pel(t) + α1,2fg102(t) + α1,3u(t)

Ṫexh(t) = α2,1Texh(t) + α2,2fg102(t) + α2,3(Pel(t) − P 0
el) + α2,4(Pmc(t) − P 0

mc)

V̇rot(t) = α3,1Vrot(t) + α3,2fg102(t) + α3,3(Pel(t) − P 0
el)

Pmc(t) ∈ [MIN Pmc, MAX Pmc] | Ṗmc(t) |≤ MAX D Pmc

u(t) ∈ [0, MAX U ] | u̇(t) |≤ MAX D U

Fig. 9. Turbogas ODE model used for our analysis.

4.2 Requirements

The goal of the turbogas controller is to set the turbogas control variable fg102
so as to keep the value of turbogas output variables Pel, Vrot, Texh within given
limits notwithstanding variations in the user demand u. Such limits are shown
in Fig. 10 and are our requirements, i.e. the properties that we will have to check
during verification.

1300 ≤ Pel(t) ≤ 2500
200 ≤ Texh(t) ≤ 580
40 ≤ Vrot(t) ≤ 120

Fig. 10. Turbogas Control System requirements.

4.3 Turbogas Controller

Fig. 11 shows the block diagram for the fuel gas valve controller (i.e. the con-
troller of Fig. 7).

In the following we describe the controller subsystems.
All the controller subsystems (namely: N1 Governor, Power Limiter, Exhaust

Temperature Limiter) are built from the elementary cell shown in Fig. 12.
Note that in the elementary cell in Fig. 12 we have the simultaneous presence

of linear blocks (e.g. the integrator block labeled 1/s in Fig. 12), saturation
blocks, test for > 0 and logical (AND) blocks. This makes the elementary cell a
hybrid system. Since all subsystems in TCS are based on the cell in Fig. 12, it
turns out that TCS itself is a (quite big) hybrid system.

From Fig. 11 it is clear that the turbogas controller output is obtained as
the minimum (block MIN) of the outputs of the three subsystems N1 Governor,
Power Limiter, Exhaust Temperature Limiter.

The N1 Governor block in Fig. 13 computes the power demand with the goal
of maintaining the turbine rotation speed within given bounds.
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N1

Power

Limiter

Governor

N
I
M 12MW

Limiter
Temperature
Exhaust

Limiter Adjust
+

OFFSET

Vrot

Texh

Pmc

Pel

fg102

fg102: Fuel Valve Opening

Pel: Electric Power Generated by the Alternator 

WINNER

Vrot: Turbine Rotation Speed 
Texh: Exhaust Smokes Temperature 
Pmc: Compressor Pression 

Fig. 11. Turbogas fuel gas valve controller.

The Power Limiter block in Fig. 14 computes the power demand with the
goal of maintaining the electric power generated within given bounds.

The Exhaust Temperature Limiter block in Fig. 15 computes the power de-
mand with the goal of maintaining the temperature of the exhaust smokes within
given bounds.

The subsystem MIN in Fig. 11 computes the minimum among its inputs.
Moreover, the block MIN returns the name (index) of the winner (i.e. of the
input which attained the minimum value) on the output labeled WINNER.

The block Limiter in Fig. 11 saturates the power demand to 12MW.
The block Adjust together with the OFFSET parameter in Fig. 11 translates

the power demand from the Limiter block into a fuel valve opening command,
i.e. into a real number in the range [0,1].

5 Experimental Results

We transformed all the continuous time models into discrete time ones using a
sampling time T of 10ms, as suggested in [10].

An example of the Murϕ code used in the declaration section of our Murϕ
model is in Fig. 6. Space constraints do not allow us to show more here.

Using Murϕ (with real numbers) we ran several experiments modifying the
value of the speed of variation of the user demand (MAX D U in Fig. 6), thus
computing an admissible range of values for the variation speed of the user
demand.

Intuitively, if MAX D U is too big, the controller cannot compensate for the
sudden user demand variation and the requirements will not be satisfied.

Fig. 16 shows our experimental results.
The size of each state is 470 bits (rounded up to 60 bytes). In all our experi-

ments we used the --cache option which replaces Murϕ hash table with a cache
table [23].

When verification fails (rows 3 and 4 of Fig. 16), Murϕ returns an error trace.
In such cases the diameter of the reachability graph gives the error trace length.
Thus it is quite clear that even for the 4th row of Fig. 16 the error trace is too



152 G. Della Penna et al.
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AND

1/s

reset at u + 4kW

−10MW

10MW

A

output Power Limiter,
output Exhaust Temperature Limiter)

WINNER
!= i ?
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X

X

Ki
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S

P
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−

+

A
B

B

SAT

SAT

u = min(output N1 Governor, 

cell
output

Fig. 12. Elementary cell used for the construction of turbogas controller subsystems:
N1 Governor, Power Limiter, Exhaust Temperature Limiter. Cell Inputs: S, P, WINNER.
Cell Parameters: i, A, B. Known Constants: Kp, Ki (from [10])

1/s 105%

6%

Pel

Kdr

X

WINNER

Vrot

+

−

P

S Cell output
N1 Governor

Accelleration

Deceleration

Island

Network

i = "N1 Governor"
A = 0
B = 10MW

Fig. 13. Turbine Rotation Speed Controller (N1 Governor). The switches
Acceleration/Decelaration, Network/Island change the controller mode. Their set-
tings are chosen by a higher level controller or by the human operator. Kdr is a known
constant (given to us in [10])

Cell

A = 300kW
B = 10MW

S

P

WINNER

Pel i = "Power Limiter "

2MW"Pel setpoint"
Power Limiter
output

Fig. 14. Electric Power Controller (Power Limiter)

Pmc

OFFSET

+ S

PTexh

WINNER

Cell

     Temperature

A = 0, B = 10MW

output
Exhaust Temperature
Limiter

Compressor
Pression of Exhaust Smokes
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long (804 states) to be shown here. However, in Fig. 17 we show the first and
last state of such an error trace.

Note how, in row 1 and 2 of Fig. 16, when MAX D U increases, the number of
reachable states increases too.

Row
Number

MAX D U Reachable
States

Rules
Fired

Reachability
Graph
Diameter

CPU
Time
(sec)

Verification
Result

1 10.0 2246328 6738984 12904 16988.18 PASS
2 17.5 7492389 22477167 7423 54012.18 PASS
3 25 1739719 5186047 1533 12548.25 FAIL
4 50 36801 109015 804 271.77 FAIL

Fig. 16. Results on a INTEL Pentium 4, 2Ghz Linux PC with 512M RAM. Murϕ
options used: -b (bit compression), -c (40 bit hash compaction), --cache (use cache
rather than hash table, cached Murϕ) -m350 (use 350 MB of RAM for the cache).

From Fig. 16 it is quite clear that only a very small fraction of the 2480 states
(480 bits are needed to represent a state) is reachable. This is the main reason
why we were able to complete verification using Murϕ. Note however that if
we consider the turbogas model without the controller, the number of reachable
states is much higher, out of reach for Murϕ. In this respect our findings are
similar to those of Kurshan and McMillan in their arbiter verification [16].

The behaviour described above is somehow to be expected. In fact, here we
are interested in automatic verification of a control system in a neighborhood of
its setpoint (i.e. our initial state is the setpoint state). Since the controller goal
is typically that of keeping the whole system in a (small) neighborhood of the
setpoint, we may expect that the set of reachable states from the setpoint is not
too big (if the controller is well designed).

Taking advantage of this fact, using a symbolic model checker (e.g. as HyTech
and SMV are) may be hard. As a result, the representation of the system transi-
tion relation can be so large that we may run out of memory even before starting
the reachability analysis. Indeed this was our experience when we tried to use
HyTech and SMV on our hybrid system verification problem.

For the above reason we decided to try Murϕ which is an explicit state verifier.
Our experimental results show that for hybrid (control) systems explicit state

model checkers (e.g. as Murϕ) should be considered among the available verifi-
cation tools.

6 Conclusions

We showed how the C long double type (finite precision real numbers) can be
easily imported within the Murϕ verifier. This allows us to easily use Murϕ for
modeling and verification of hybrid systems.

We presented a case study on automatic verification of a Turbogas Control
System (TCS) using the Murϕ verifier. TCS is is a quite large control system and
is the main subsystem of ICARO, a 2MW Co-generative Electric Power Plant.
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Startstate initstate fired.
Power:+2.000e+03
Vrot:+7.500e+01
Texh:+5.520e+02
N1_gov:+1.000e+03
Pow_lim:+1.000e+03
Temp_lim:+1.000e+03
valve_fg102:+1.000e-01
v:+7.500e+02
N1_state:+1.000e+03
Powlim_state:+1.000e+03
templim_state:+1.000e+03
minall:+1.000e+03
winner:2
step_counter:0
pression:+1.200e+01
user_demand:+0.000e+00
modality_value:1
................

................
The last state of the trace (in full) is:
Power:+1.695e+03
Vrot:+3.999e+01
Texh:+5.520e+02
N1_gov:+1.211e+04
Pow_lim:+2.112e+03
Temp_lim:+7.294e+03
valve_fg102:+2.111e-01
v:+1.050e+02
N1_state:+2.115e+03
Powlim_state:+1.808e+03
templim_state:+2.115e+03
minall:+2.112e+03
winner:2
step_counter:5
pression:+1.200e+01
user_demand:+1.500e+02
modality_value:2
----------
End of the error trace.
=============================================
Result: Invariant "rotation speed ok" failed.

Fig. 17. First and last state of the 804 states of Murϕ error trace for row 4 of
Fig. 16.

We showed experimental results on using Murϕ for verification of TCS. Using
Murϕ we were able to compute an admissible range of values for the variation
speed of the user demand for electric power to the turbogas.

Our experimental results suggest that Murϕ enhanced with finite precision
real numbers can be used quite effectively for modeling and for automatic ana-
lysis of hybrid control systems.

Testing Murϕ on larger hybrid systems is a natural next step of our research
efforts.
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